We need to make one qualification concerning this duplication of connections. If, having found the best stimulus- -orientation, position, movement direction, and so on- -we then compare the responses evoked from one eye with the responses evoked from the other, we find that the two responses are not necessarily equally vigorous. Some cells do respond equally to the two eyes, but others consistently give a more powerful discharge to one eye than to the other. Overall, except for the part of the cortex subserving parts of the visual field well away from the direction of gaze, we find no obvious favoritism: in a given hemisphere, just as many cells favor the eye on the opposite side (the contralateral eye) as the eye on the same side (the ipsilateral). All shades of relative eye dominance are represented, from cells monopolized by the left eye through cells equally affected to cells responding only to the right eye. We can now do a population study. We group all the cells we have studied, say 1000 of them, into seven arbitrary groups, according to the relative effectiveness of the two eyes; we then compare their numbers, as shown in the two bar graphs to the left. At a glance the histograms tell us how the distribution differs between cat and monkey: that in both species, binocular cells are common, with each eye well represented (roughly equally, in the monkey); that in cats, binocular cells are very abundant; that in macaques, monocular and binocular cells are about equally common, but that binocular cells often favor one eye strongly (groups 2 and 5).